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Phase transitions of semiflexible hard-sphere chain liquids
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We present a density-functional theory for describing liquid-crystalline phase transitions in a fluid of semi-
flexible hard-sphere chain molecules based on the Onsager second-virial approximation for the free energy.
Key ingredients of this theory are the generation of semiflexible chain conformations and calculation of the

pair excluded volume and excluded area using a single-chain Monte Carlo enumeration method. First, we
investigate the isotropic-nematic phase transition. Next, the theory is extended to account for a smectic-A phase
by a bifurcation analysis around the nematic solution. The perturbation is calculated using a lowest-order

Fourier series representation.
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The system of hard-sphere chain molecules has been stud-
ied extensively, as it is reasonable to expect that this model
provides a suitable reference system in a perturbation theory
for polyatomic molecular fluids interacting by more complex
and realistic intermolecular forces [1,2]. Computer simula-
tions have shown that fused hard-sphere chains with a suffi-
cient degree of rigidity exhibit both nematic and smectic-A
liquid-crystalline phases, in addition to the usual isotropic
liquid and solid phases [1,3-7]. Studies of liquid-crystalline
ordering in this model using density-functional theories have
also been done [1,2,5,8,9], but so far have been restricted to
the uniform isotropic and nematic phases. In this paper, we
describe some preliminary steps to extend the density-
functional treatment of fused hard-sphere chain fluids to con-
sideration of smectic-A phases, which are characterized by a
periodic one-dimensional spatial variation of the chain prob-
ability density. The Helmholtz free-energy functional F of
the system is based on the Onsager second-virial approxima-
tion [10]. Minimizing F yields a self-consistent equation for
the molecular probability density. For uniform (i.e., isotropic
and nematic) phases, this equation involves the excluded vol-
umes between pairs of chains, while the smectic-A phase
depends on “excluded areas” between pairs of chains, both of
which are evaluated by a Monte Carlo (MC) partial enumera-
tion technique.

In this work, each molecule is modeled as a “pearl neck-
lace” of N, fused hard spheres, where the distance between
two adjacent beads, i.e., the bond length, is denoted b, while
the diameter of each sphere is denoted D. The conformation
of a chain molecule is described by the positions
£, Ty of its N, spheres, which is denoted R for sim-
plicity. We denote the orientation of bonds in the chain by
W), 0, ... Oy . In a system containing N chain molecules,
p(R) is defined as the probability density of finding a mol-
ecule with configuration R, which we take to be normalized
as follows:

J dRp(R) = f dr dowdw, ... dch_lp(R) =N, (1)

where r.. denotes the position of any one sphere in the chain.
Besides repulsive hard-sphere intramolecular and intermo-
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lecular forces between the chains, we assume a simple bond-
bending energy for each chain, which is modeled by

Bun,n+l =— KCOS 0n,n+1 (K > O)’ (2)

where 6, ., is the angle between bonds n and n+1.
In the Onsager second-virial approximation, the Helm-
holtz free-energy functional of the system is given by [11]

BF = f dRp(R)[1In p(R) e = 1 + Bu,(R)]

1
_EfdedRZP(Rl)p(RZ)fM(RhRZ)‘ (3)

The thermal volume, v, is an unimportant parameter. Here
u,(R) is the total one-body potential of a molecule, which
includes the intrachain hard-sphere repulsions, the bending
energies Eq. (2), as well as any possible external fields
(which are not considered in this work). The second integral
of Eq. (3) is related to interactions between chains:
fu(R;,R)) is the standard Mayer function. For the hard-
sphere model, the latter has values of 0 if there is no overlap
between any spheres on two separate chains and —1 if there
is any such overlap. Minimizing SBF under the condition of
the constraint Eq. (1) gives the following “self-consistent”
equation for p(R,):

p(Ry) = c exp[~ Bu;(Ry) +I(R})], (4)

where ¢ is a normalization constant, determined by Eq. (1),
and I(R,) is defined as

IR)) = f dR,f (R}, Ry)p(R,). (5)

In this work, integrals such as in Eq. (5) over chain confor-
mations represented by R, are evaluated by partial enumera-
tion of self-avoiding single-chain conformations generated
by Monte Carlo methods.

The main step in solving Eq. (4) is to evaluate the integral
I(R,). First we consider the simplified case of a spatially
uniform system, which applies to isotropic and nematic

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.73.032701

BRIEF REPORTS

phases. In this case, it can be assumed that p(R,) is transla-
tionally invariant and only depends on the set of bond orien-
tations ;= (w;;...w;y ), not on the positions of the
spheres. Then Eq. (5) becomes

I(RI) = I(w]) == J deVex(wl’wZ)p(w2)’ (6)

where V, (w,,®,) is the “excluded volume” between two
chains with configurations w; and w,. In this work, for our
discrete MC-generated single-chain configurations, the ex-
cluded volume was evaluated by Barrett’s algorithm [12].

We define the conformation probability distribution func-
tion f(w)=p(w)/p, where the average number density p
=N/V. From Eq. (1), this satisfies

f dof(w)=1. (7)

It follows from the last four equations that the distribution
function f(e,) can be expressed as

flooy) = C’fo(wl)el(w‘), (8)

where fy(w) is the “ideal gas™ or unperturbed distribution
function, fy(®) «exp[—Bu;(w)], and ¢’ is an appropriate nor-
malization constant. The average value of any function g(w)
with respect to the unperturbed distribution function is de-
fined as

(@) = f dof)(w)g(w). 9)

In the Monte Carlo enumeration method used in this work, a
large number Ny, of single-chain conformations with prob-
ability proportional to f(w) are generated, so the above
equation becomes

Nyc

D= — > g(w). (10)

NMC i=1

From Egs. (6) and (8)—(10), for chains generated with prob-
ability proportional to fy(e,), we can express the final self-
consistent equation in terms of I(w,) as

N, ;
Eiznfc Vex(wl s wi)el(w’)

N .
Ei_l\ilc @)

I(o)=-p (11)

We have solved Eq. (11) by an iteration method, which is
started using an appropriate initial guess for I(w) on the
right-hand side of that equation, and is continued until suc-
cessive iterates for I(ew) converge to unchanging values
within some tolerance for each of the chain configurations
w,; generated by the Monte Carlo method. In practice, we
have found it worthwhile to use a “mixing” method [13] to
achieve convergence, i.e., using the relation I§Z+l):algfl)+(l
—a)I(o';)t, where I;Z) is the input for the nth iteration of I [on
the right-hand side of Eq. (11)] and Iii’t)t is the output of that

iteration [on the left-hand side of Eq. (11)]. Using values of
a=0.15, together with filtering techniques [14] which mini-
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FIG. 1. Results for S, vs », comparing the present theory for
14 000 chains (+) with the previous results (X) of Jaffer er al. [8].

mize the variance of the unperturbed distribution fy(w) of
end-to-end vectors, we have obtained accurate results using
values of Ny, as low as 2000. In the Barrett algorithm [12]
used for calculating the excluded volume, the number of ran-
dom “Barrett” points for overlapping pairs of spheres on two
molecules was chosen to be 5, a compromise between accu-
racy and computing time.

We test the theory above by determining the nematic-
isotropic phase transition for a chain of eight spheres with a
high bending energy =50, and compare with the results
obtained by Jaffer et al. [8]. The latter work was based on an
approximate analytical evaluation of the excluded volume
for semiflexible hard sphere chains, which agreed well with
computer simulations, and which should give nearly the
same results as ours in the high bending energy regime. (We
note that the theory described in Ref. [8] included scaled-
particle theory corrections for high densities, which have
been turned off in the present comparisons.) The main results
are shown in Figs. 1 and 2, which plot the nematic order
parameter S, and reduced pressure P*= BPv,,, against the
volume fraction »= pv,,,;, respectively. Here v,,,; is the vol-
ume of a chain molecule [8], while the pressure P is obtained
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FIG. 2. Comparison between results for P* vs 7 of the present
theory for 11 000 chains (+) and previous results (X) (see Ref. [8]).
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from a density derivative of the Helmholtz free energy F.
Here the order parameter is given by the largest eigenvalue
of the ordering tensor [4] with Cartesian components Oup
= %(3 Te.ale p— Oa p)» Where 1, is the end-to-end vector and the
brackets denote averaging with the distribution function
f(®). The corresponding eigenvector is the mean direction of
alignment (or director), which is found to fluctuate slightly
during the numerical calculations [14]. The results for S, and
P" are in close agreement with those of Jaffer et al. [8]. In
Fig. 1, the onset of nematic ordering is indicated by the
abrupt jump to nonzero values of S, near a density 7
~(.49. This is reflected in Fig. 2 by the appearance of a
local maximum (minimum) in the isotropic (nematic)
branches of P* vs 7. The precise values of the first-order
isotropic-nematic transition densities should be determined
by a Maxwell construction, but we have not performed this.
It is uncertain at this stage if the small differences between
the present results and those of Ref. [8] are due to numerical
limitations in the present treatment or to differences between
the theories. In principle, the present work is an exact imple-
mentation of the Onsager theory for semiflexible chains
while that of Ref. [8] contains further approximations, al-
though we expect these differences to have slight effects for
the high bending energies « considered here.

We now go on to describe the application of the theory to
smectic-A phases, again based on the fundamental self-
consistent Egs. (4) and (5). In the smectic-A phase the mol-
ecules are positionally ordered in the direction parallel to the
director and disordered in the other two directions. Defining
the z axis to be along the director, this means that now
p(R)=p(z,w), where z is taken to be the z coordinate of the
midpoint of a chain. As before, we represent the probability
density in terms of the conformation distribution function
f(z,w)=p(z,w)/p, which now satisfies the normalization
condition

1 d
- f dzdwf(z,w) =1, (12)
dJ,

where d is the smectic period. The function /(R;) in Egs. (4)
and (5) becomes

I(z, ) =—p f dz,dw,A (21, @152, 0,)f(2,0,), (13)

where A(z;, ®,;2,, ®,) is the excluded area between chains 1
and 2, defined as

A(Zl’wl;ZZ’wZ)z_Jdx2dy2fM(R1,R2)- (14)

Due to translational invariance, the function A(z;®;,7,®>)
only depends on the relative distance z,;=(z,—z;) and not
on z; and z, separately. Again, we used Barrett’s algorithm
[12] for the calculation of the excluded area.

Following the analyses of Mulder [15], Poniewierski [16],
and van Roij et al. [17] for perfectly rigid molecules, we
assume that the solution for f(z,®) is a small perturbation
around the nematic solution f(w) discussed previously, i.e.,
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fz,0) = flw) + eAf(z, w), (15)

where € is a control parameter, assumed to be || <1. From
Egs. (13) and (15), I(z;,®;) can be written as

1(z),0)) = (o)) + €Al(z}, @), (16)

where

Al(zy, @) =— Pf dz,d@,A(z21, @325, @) Af(25, ).

(17)

Af(z,w) should be a periodic function in the z direction for
all chain configurations w with period of d. Due to the asym-
metry of chain conformations, generally Af(z,®) is not an
even or odd function of z, and therefore both cosine and sine
terms should appear in its Fourier series representation. In
the lowest order Fourier representation, this function is ap-
proximated by

Af(z,w) = ¢, (w)cos(qz) + p,(w)sin(gz), (18)

where g=21/d is the smectic wave number.
To leading order in ¢, it can be shown from Egs. (4), (5),
and (15)—(18) that

Af(z,w) = f(w)Al(z, w). (19)

Using the translational invariance discussed above,
A(z),®1;2,@,)=A(0,®;;25;, ®,). Expressing z,=2,;+2; in
the integrand of Eq. (17) and using the sine and cosine rules
together with Egs. (18) and (19), we obtain the following
two coupled equations for the functions ¢,(w;) and ¢,(®,),
namely:

() =— Pf(‘m){f dwA (@, 0,;9) P, (@,)

+de2As(wl’w2;q)¢o(w2):|’ (20)

¢0(w1) == pf(w1)|:f deAc(wlawZ;q) ¢o(w2)

- f dw2As(w1sw2§61)¢e(w2)] (21)

where

Ac(wl»wZ;q)EjdZZlA(O»wl;ZZI’wZ)COS(qZZI)» (22)

and

As(wl’wZ;Q)EJdelA(O’wl;ZZI»wz)Sin(qu)- (23)

The above homogeneous equations always have trivial solu-
tions of ¢,(w)=¢,(@w)=0. Our objective is to find the small-
est value of p which gives nontrivial solutions of those equa-
tions. As earlier, we have found that mixing methods are
required to obtain convergent solutions: by trial and error, we
have found that a suitable value of « for the present analysis
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FIG. 3. Range of period d vs volume fraction 7 giving a non-
trivial solution for the smectic-A phase, employing 2000 (+), 2500
(X), and 3000 (*) chains.

is near @=0.85, much larger than needed earlier. Suitable
values of g=2/d also had to be explored, generally start-
ing with values for the period d near R,,,,,={|r,|). For the
present case of high bending energy, chain conformations are
nearly symmetrical under inversion and thus we find that |¢,|
is usually much smaller than |g,|.

The range of d/R,,, vs m in which the final self-
consistent equations Egs. (20) and (21) have nontrivial solu-
tions is shown in Fig. 3. All the points which exhibit a non-
trivial solution are in the range 7>0.67, although the exact
location of the bifurcation point is not certain. All the
d/R,,.., values are greater than one, which is consistent with
earlier studies [15]. The results shown in Fig. 3 exhibit fea-
tures similar to that of the analysis of perfectly aligned hard
rods in [15], namely that for a given value of 7 there is a
range of values of ¢ which allow a smectic-A solution. The
true nematic-smectic-A bifurcation point should be at the
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lowest volume fraction 7 for which a smectic-A solution
exists. For the eight-bead chains studied, this is roughly es-
timated to be at =0.70. To compare this value with avail-
able computer simulation studies, we should take account of
higher-virial corrections, such as by the Parsons-Lee method
[18,19] as applied in Ref. [20]. Applying also the “effective
molecular volume™ ideas of Ref. [2] for mapping hard-sphere
chains to spherocylinders, we find that the nematic-smectic
bifurcation at #=0.70 is shifted to a much lower value 7
~(.36. This is comparable with results obtained for the sys-
tem of linear (k=) tangent hard-sphere chains with N,=7
[1,6], which indicate that the lowest density for the
smectic-A phase is between 7=0.356 and 0.396. It is likely
that the effects of the smaller N, value (7 vs 8) and the
infinite rigidity used in those studies approximately cancel.

The present studies have been limited to considering only
eight-bead chains and a weak flexibility (i.e., high bending
energy k=50). It is of interest to extend the studies both to
longer chains and to more flexible molecules. For more flex-
ible molecules, it is likely that the approximations made in
the theory by Jaffer et al. [8] with which we have compared
our results (as well as those in related work by Fynewever
and Yethiraj [5]) become less valid, and the results of the
present theory should show greater differences from those
works. The present studies of the smectic-A phase also were
limited to a bifurcation treatment about the nematic phase
and use of a lowest-order Fourier series representation of the
probability density, which should only be accurate close to a
second order or the spinodal point of a first-order nematic-
smectic transition. For a more in-depth study of the
smectic-A phase, the full nonlinear theory for this phase as
well as higher-order terms in the Fourier series representa-
tion of the probability density should be retained.
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